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From what to eat, which task to prioritize, whether to call a friend, go 
on a date or book a family holiday, the decisions we take are guided 
by what we expect the outcomes of those decisions to be. Sometimes 
it can seem extremely difficult to work out which course of action 
is least likely to result in a feared outcome, whether avoiding being 
the one made redundant or preventing an argument turning into a 
breakup. Individuals who suffer from anxiety focus disproportion-
ately on the potential occurrence of future negative outcomes and 
whether or not they can be averted. Attempts to understand this have 
led to suggestions that anxiety may be linked to difficulty in estimat-
ing the probability or severity of future negative events or in com-
bining these estimates when choosing between actions1–3. Advances 
in computational modeling provide us with the tools to investigate 
which of the mechanisms involved in decision-making are disrupted 
in anxious individuals.

There are often times when the correct course of action seems 
unclear, and indeed our best choice of what to do leads unexpect-
edly to an aversive outcome. This may in turn lead to the next deci-
sion being harder still. Should one switch behavioral patterns or stay 
one’s course? Anxious individuals are reported to be highly intolerant 
of situations characterized by uncertainty as to what will happen or 
which course of action should be followed4,5. They are more likely 
to endorse finding such situations distressing, leading to a sense of 
immobilization4,5. One possible explanation for this is that individuals 
prone to anxiety may have difficulty estimating outcome likelihood 
when there are sources of uncertainty complicating the action-out-
come relationship.

In the context of decision-making models, a number of alternate 
forms of uncertainty are recognized6–8. Here, we focus on two types. 
One source of uncertainty is produced by noise in the relationship 
between actions and outcomes, such as occurs if an action only leads 
to a given outcome on a proportion of the occasions it is performed.  

A second source of uncertainty is produced when the underlying 
causal structure is non-stationary, or volatile, for example, when 
action-outcome contingencies switch and an action that was primarily  
associated with a given outcome becomes predominantly associ-
ated with another. If unexpected or ‘surprising’ outcomes are caused 
by noise, then current action choices are optimally determined by 
averaging over the outcomes of many previous actions. In contrast, 
if surprising outcomes are caused by a change in action-outcome 
contingencies in a volatile environment, then only the most recent 
events should be used to guide action choice6. In terms of formal rein-
forcement accounts of learning9,10, a higher learning rate should be 
implemented when the environment is volatile than when it is stable. 
Computational studies of decision-making reveal that healthy vol-
unteers do indeed adapt their learning rate in response to changes in 
environmental volatility8,11. Specifically, the behavior of participants 
is consistent with faster updating of action-outcome contingencies  
in volatile than in stable environments. This change in learning 
behavior occurs even when changes in environmental volatility are 
not explicitly cued and has been shown to closely track an optimal 
Bayesian decision-making strategy8,11.

Individuals prone to anxiety might either show a general deficit 
in updating action-outcome estimates following unexpected aversive 
outcomes or a specific problem with adjusting the speed of updating 
(that is, learning rate) to reflect the stability or volatility of the current 
environment. Recent Pavlovian fear conditioning findings suggest 
that trait-anxious individuals struggle to adjust fear downregulation 
to reflect changes in stimulus-stimulus contingencies between con-
texts12. If individuals prone to anxiety have a particular difficulty 
in processing contingencies that change over time or between con-
texts, we might predict that they will show a deficit in using changes 
in environmental volatility to infer whether or not action-outcome 
contingencies have changed, and to alter their behavioral choices 
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Statistical regularities in the causal structure of the environment enable us to predict the probable outcomes of our actions. 
Environments differ in the extent to which action-outcome contingencies are stable or volatile. Difficulty in being able to use 
this information to optimally update outcome predictions might contribute to the decision-making difficulties seen in anxiety. 
We tested this using an aversive learning task manipulating environmental volatility. Human participants low in trait anxiety 
matched updating of their outcome predictions to the volatility of the current environment, as predicted by a Bayesian model. 
Individuals with high trait anxiety showed less ability to adjust updating of outcome expectancies between stable and volatile 
environments. This was linked to reduced sensitivity of the pupil dilatory response to volatility, potentially indicative of altered 
norepinephrinergic responsivity to changes in this aspect of environmental information.

np
g

©
 2

01
5 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.

http://www.nature.com/doifinder/10.1038/nn.3961
http://www.nature.com/natureneuroscience/


nature neurOSCIenCe	 VOLUME 18 | NUMBER 4 | APRIL 2015 591

a r t I C l e S

 accordingly. Such a deficit would mean difficulty in differentiating 
contexts or periods of time in which unexpected aversive outcomes 
should be ignored as chance events and those in which unexpected 
aversive outcomes are likely to signal a change in action-outcome 
contingencies, and as such should lead to a change in action. This 
could potentially explain why individuals at trait risk for anxiety show 
intolerance of uncertainty, hesitation and poor decision-making in 
real-life settings in which the relationship between alternate courses of 
actions and avoidance of future negative events is often uncertain.

Our primary hypothesis was therefore that, when attempting to 
avoid aversive outcomes, high trait-anxious individuals would be less 
able than low trait-anxious individuals to adjust their updating of 
action-outcome contingencies in response to changes in environmen-
tal volatility. We focused on individual differences in trait anxiety to 
investigate mechanisms that might convey vulnerability to anxiety 
disorders, without the confounding effects of psychotropic medication 
or chronic illness. We used an aversive learning task that consisted of 
two blocks: in one, the relationship between participants’ actions and 
the outcomes of those actions was stable; in the other, this relation-
ship was volatile, repeatedly changing over time. This was equivalent 
in design to a previously used task8, but with action choice to gain 
financial reward replaced by action choice to avoid bursts of electri-
cal stimulation. The difference in participants’ learning rate between 
the stable and volatile task blocks provided a measure of participants’ 
ability to adapt their learning to changes in environmental volatility.  
We predicted that the difference in learning rate between stable and vol-
atile task blocks would be reduced in high trait-anxious individuals.

Recent findings indicate that pupil dilation may track important 
changes in the causal statistics of the environment, including changes 
in environmental volatility13,14. This adds to accounts arguing that 
pupil diameter may reflect, among other influences, activity of the 
locus coeruleus norepinephrine system15–17 and models proposing 
norepinephrinergic control over the learning of environmental uncer-
tainty6. Given these findings, and established reports of altered nore-
pinephrinergic function in anxiety18,19, we also hypothesized that trait 
anxiety–related deficits in differential learning between volatile and 
stable task blocks would be accompanied by a reduced pupil dilatory 
response to environmental volatility.

Consistent with our predictions, high trait-anxious individuals 
showed a specific deficit in adjusting learning rate in response to 
changes in environmental volatility in our aversive learning task. 
This was associated with a reduced pupil response to trial-wise esti-
mates of environmental volatility. These results provide evidence that 

trait vulnerability to anxiety is associated with impoverished use of 
environmental statistics, especially that pertaining to environmental 
volatility, to determine the extent to which to update action-outcome 
contingencies when attempting to avoid aversive outcomes. This may 
represent a core deficit underlying impoverished decision-making in 
individuals at elevated risk of developing anxiety disorders.

RESULTS
We asked 31 participants (22 females) screened to have a range of 
scores on the Spielberger State-Trait Anxiety Inventory (STAI20) trait 
subscale to perform an isoluminant version of a two-armed bandit 
learning task8 in which outcomes were moderately painful electrical 
shocks. Before participants completed the task, the intensity of the elec-
trical shocks were calibrated so that the maximum level administered 
had a subjective pain level of 7 on a scale of 1 (minimal pain) to 10 
(worst possible pain) (Online Methods and Supplementary Fig. 1).

On each trial, participants had to choose one of two shaped, isolu-
minant, gabor patches, either of which might result in the delivery of 
an electrical shock (Fig. 1a). In the stable task block, one of the two 
shapes consistently predicted shock delivery with a probability of 75%, 
and the other shape resulted in shock delivery on the remaining trials. 
In the volatile task block, the shape most predictive of shock delivery 
reversed on five occasions across the block of trials (Fig. 1b). On each 
trial, each shape was associated with a specific magnitude of electrical 
shock that would be delivered if the shape was chosen and if it resulted 
in shock administration on that trial. This magnitude was displayed in 
the center of each shape. Magnitude values were scaled between 1 and 
99, where 1 equated to a subjective pain level of 1 and 99 to a subjec-
tive pain level of 7. The trial-wise magnitudes of the shocks for each 
shape were chosen from independent random distributions (Online 
Methods). To perform the task optimally, participants had to integrate 
the information about shock magnitude and shock probability, the 
latter needing to be inferred from the outcome of previous trials. The 
shape chosen and the time taken to select it was recorded. Pupil dila-
tory responses were also measured. As a result of equipment failure, 
behavioral and pupil data were lost from one participant (excluded) 
and pupil data from two further participants.

Effect of environmental volatility on learning rate
Learning rate α reflects the extent to which participants’ choice behav-
ior was guided by the outcomes of recent actions versus those further 
back in the individual’s experience. At high learning rates, choice 
behavior is strongly controlled by the outcomes of recent actions.  

Figure 1 Task structure. (a) Example trial. 
Participants had to choose one of two shaped 
Gabor patches. Each shape contained a two 
digit number that indicated the magnitude 
of electrical shock that might be received 
should that shape be chosen. Following option 
presentation, onset of a response cue indicated 
that participants could make their choice. After 
response, a variable interval was followed by 
outcome delivery. The shape associated with 
the electrical shock for that trial was displayed 
in the center of the screen for 2 s. If the 
participant had chosen this shape, an electrical 
shock of the indicated magnitude was delivered 
at the onset of the outcome period. (b) Outcome 
probabilities across the course of the task. The task comprised two blocks. In the stable block (shaded), one shape (for example, the circle) had a 75% 
probability of resulting in an electrical shock being delivered if it was chosen; the other shape (for example, a square) had a 25% probability of resulting 
in shock delivery. In the volatile block (unshaded), the probability that choice of a given shape would result in shock delivery switched every 20 trials 
between 80 and 20%. Participants were randomly assigned to complete the task with the stable block first (as shown) or with the volatile block first.
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More precisely, the difference between the expected and actual out-
come on a given trial has a large effect on change in outcome expect-
ancy and subsequent choice behavior. In contrast, at low learning 
rates, surprising outcomes lead to little change in outcome expectancy 
and behavior. We estimated participants’ learning rates in the stable 
and volatile task blocks by fitting a simple Rescorla Wagner learn-
ing model to their choices in each task block (Online Methods and 
Supplementary Modeling Note). We assessed whether participants, as 
a group, adapted their learning rate in response to the change in envi-
ronmental volatility between the stable and volatile blocks. Consistent 
with prior findings for reward8, which we replicated (Supplementary 
Fig. 2a), participants’ learning rates were higher in the volatile than 
in the stable block of our aversive learning task (F(1,28) = 16.3,  
P < 0.001; Fig. 2a and Supplementary Fig. 3a), regardless of the order 
in which the two blocks were completed (F(1,28) = 1.0, P = 0.3).

In addition to updating their expectancies, or ‘beliefs’, to reflect 
current action-outcome contingencies, participants needed to trans-
form these beliefs into action choices. We formally described this 
process using a softmax action selector model that contains two free 
parameters: a risk preference term that controls the relative weight 
of outcome probability versus shock magnitude used in the calcula-
tion of expected value (that is, whether a given participant tends to 
prefer low-probability, high-magnitude shocks over high-probability, 
low-magnitude shocks), and an inverse decision temperature term, an 
estimate of the extent to which calculations of expected value influ-
ence choice8 (Supplementary Modeling Note). Across participants, 
there was no effect of block volatility, block order or their interaction 
on either of these parameters (P > 0.1). This indicates that the effect of 
the task volatility manipulation was confined to participants’ learning 
rates, consistent with expectations based on previous findings8.

Trait anxiety is linked to reduced adaptation of learning rate
Consistent with our predictions, elevated trait anxiety was associ-
ated with a reduced change in learning rate between blocks (r(28) =  
−0.42, P = 0.02; Fig. 2b). An effect of anxiety was only seen for change 
in learning rate between stable and volatile blocks; there was no sig-
nificant relationship between anxiety and mean learning rate across 
blocks (r(28) = 0.1, P = 0.6) or with learning rate in each block (vola-
tile block, r(28) = −0.1, P = 0.6; stable block, r(28) = 0.26, P = 0.16). 
In other words, low trait-anxious individuals were able to adjust their 
learning appropriately between blocks, learning (that is, updating  

outcome estimates) fast when the world was fast-changing and slowly 
when the world was stable. By contrast, high trait-anxious individu-
als were not able to learn in this flexible manner, instead learning 
similarly in both blocks. It is notable that mean learning rate was 
not modulated by trait anxiety. This suggests that high trait-anxious 
individuals did succeed in updating outcome expectancies following 
surprising outcomes, but that they were unable to modulate this on 
the basis of the volatility of the current environment.

The optimal adjustment of learning rate between stable and vola-
tile conditions has previously been formally described in a Bayesian 
framework for a reward-based version of the task used here8. In this 
prior study, participants’ behavior closely tracked that of an ideal 
Bayesian learner. We used the same Bayesian formalization to provide 
an estimate of the information available to participants during the 
aversive learning task and the degree to which learning rate should 
be adjusted between blocks (Online Methods and Supplementary 
Modeling Note). Participants with low levels of trait anxiety altered 
their learning rate between the stable and volatile blocks to an equiv-
alent degree to the ideal Bayesian learner8. As trait anxiety levels 
increased, participants diverged increasingly from the optimal change 
in learning rate between stable and volatile blocks described by the 
Bayesian learner model (Fig. 2b), showing reduced adaptation of 
learning rate. Additional modeling revealed that, even when multi-
ple parameters, including a decay term, were allowed to compete for 
influence over a dynamic learning rate, trait anxiety was uniquely 
associated with a reduction in the influence of environmental volatil-
ity (Supplementary Modeling Note and Supplementary Fig. 4).

As outlined earlier, when learning rate is high, recent trial out-
comes inform behavioral choice to a greater extent. Consistent with 
elevated trait anxiety being associated with reduced adaptation of 
learning rate, high trait-anxious individuals showed less adjust-
ment between volatile and stable blocks in their use of recent trial 
outcomes to inform choices than low trait-anxious individuals  
(Supplementary Fig. 3c,d).

An additional illustration of the consequences of non-optimal 
learning for actual choice behavior is provided by consideration of 
performance on those trials on which choice is hardest. Following 
previous work8, this was defined as those trials with a difference 
in expected value between the two alternatives of 5 or less. Trait 
anxiety was significantly positively associated with the number of 
shocks received on these trials (r(28) = 0.37, P = 0.02, one-tailed; 

Figure 2 Estimates of participants’ learning 
rates. (a) Participants’ choices during the stable 
and volatile blocks of the aversive learning task 
were fitted with a Rescorla Wagner learning 
model in which learning rate was allowed to 
vary. Estimates of individual participants’ 
learning rates are displayed (circles) separately 
for the stable and volatile blocks for the two task 
schedules (schedule 1 = stable task block first; 
schedule 2 = volatile task block first).  
A logarithmic scale is used. Black lines display 
mean (±s.e.m.) of participant learning rates, 
gray dashed lines link the learning rates in 
volatile and stable blocks for each participant. 
Participants showed higher learning rates in the 
volatile versus stable blocks regardless of the 
order in which they were completed, F (1,28) =  
16.3, P < 0.001. (b) The relative log learning rate for the volatile versus the stable blocks (i.e. log(LR in volatile block) −log(LR in stable block)) was 
negatively correlated with participant trait anxiety, r(28) = −0.42, P = 0.02. The black dashed line indicates the degree to which the model of an 
optimal Bayesian learner (as described previously8) adjusted its learning rate. As can be seen, low trait-anxious participants altered their learning rates 
to a similar degree to the Bayesian Learner, with high trait-anxious participants showing a reduced adaptation of learning rate between the volatile and 
stable blocks of the task. Error bars represent the s.d. of the estimated parameters from the behavioral model for each subject.

1a b

0.1

0.01

3.0

2.5

2.0

1.5

1.0

0.5

0

–0.5

–1.0

–1.5

–2.0

–2.5
20 30 40 50 60 70

Trait anxiety score

r(28) = –0.4, P = 0.02

Sch
ed

ule
 1

sta
ble

 b
loc

k

Le
ar

ni
ng

 r
at

e

R
el

at
iv

e 
lo

g 
le

ar
ni

ng
 r

at
e

(v
ol

at
ile

 b
lo

ck
 –

 s
ta

bl
e 

bl
oc

k)

Sch
ed

ule
 1

vo
lat

ile
 b

loc
k

Sch
ed

ule
 2

vo
lat

ile
 b

loc
k

Sch
ed

ule
 2

sta
ble

 b
loc

k

np
g

©
 2

01
5 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.



nature neurOSCIenCe	 VOLUME 18 | NUMBER 4 | APRIL 2015 593

a r t I C l e S

Supplementary Fig. 5a). Furthermore, across participants, the 
number of shocks received on these ‘difficult’ trials was negatively 
correlated with the extent of adaptation of learning rate between stable 
and volatile blocks (r(28) = −0.31, P = 0.05, one-tailed; Supplementary 
Fig. 5b).

For completeness, we also examined whether estimates of the risk 
preference and decision temperature parameters from the softmax 
action selector model varied as a function of participant trait anxiety 
levels. There was no significant relationship between trait anxiety 
and these parameter estimates across or within blocks, or as a func-
tion of block type (P > 0.1; Supplementary Fig. 6). Furthermore, the 
relationship between trait anxiety and change in learning rate between 
blocks remained significant when controlling for either change in 
decision temperature (rpartial(27) = −0.38, P = 0.04) or risk preference 
(rpartial(27) = −0.41, P = 0.03).

Responses to surprising outcomes are not modulated by trait 
anxiety
Adaptation to environmental volatility requires processing of the 
surprise value or unexpectedness of the chosen action’s outcome and 
assessment as to whether or not there has been a change in action-
outcome contingencies. This may be an implicit rather than an explicit 
process. One possibility is that trait-anxious individuals’ difficulty in 
adapting to changes in environmental volatility in our aversive learn-
ing task might arise secondarily to a more general deficit in process-
ing the surprise value of outcomes. As outlined above, this seems 
unlikely given that there was no effect of trait anxiety on mean learn-
ing rate across task blocks. To further investigate this, we examined 
whether trait anxiety modulated choice reaction time as a function 
of the surprise value of the previous trial’s outcome. In the reinforce-
ment learning literature, it has been reported that, when an outcome 
is surprising, participants typically show slowed decision-making on 
the subsequent trial21. Consistent with this, we observed that, across 
participants, surprising outcomes were indeed associated with slowed 
choice reaction times on the subsequent trial (that is, across partici-
pants, the beta weight of outcome surprise on trial n on individual 
participant’s reaction times on trial n + 1 differed significantly from 
zero (t(29) = 2.3, P = 0.03; Online Methods). However, the effect of 
surprise on participants’ reaction times was not modulated by par-
ticipant trait anxiety (r(28) = 0.1, P = 0.5). This finding is consistent 
with high trait-anxious participants being specifically insensitive to 
changes in environmental volatility rather than simply unable to proc-
ess surprising outcomes. In these analyses, trial-wise outcome sur-
prise was calculated, using the Bayesian learner, by taking the negative 
logarithm of the conditional probability of the outcome observed 
given the prior estimated probability of (that is, ‘belief ’ in) that out-
come22 (Online Methods and Supplementary Modeling Note). An 
alternate version of these analyses using a non-Bayesian measure of 
surprise produced similar results (Supplementary Fig. 7a).

Pupil dilation tracks both volatility and surprise
Recent accounts have described an increase in pupil dilation in 
response to both environmental volatility and outcome surprise13,14,23. 
Prior to examining differences between high and low trait- 
anxious individuals, we sought to establish, at a cross-group level, 
the pupil dilatory response to volatility and outcome surprise in our  
current study.

Trial-wise pupil responses to choice outcome were baseline cor-
rected (Online Methods). The post-outcome period was sampled 
using 6,000 1-ms bins. Regression analyses were conducted for each 
of these bins to examine the extent to which trial-wise estimates of 

volatility and outcome surprise derived from the Bayesian learner 
predicted pupil dilation (controlling for outcome, that is, shock or 
no shock, shock magnitude, and expected value of the chosen and 
not chosen shapes). These regression analyses produced two time 
series of beta-weights: one for volatility and one for surprise. These 
time series were down-sampled to give beta estimates of the effects 
of surprise and volatility on pupil dilation for sequential 1-s time bins 
across the outcome period.

Group-level analyses revealed that trial volatility was significantly 
associated with an increase in pupil diameter following outcome 
delivery (F(1,26) = 9.8, P = 0.004). Bonferroni-corrected one-sample 
t tests, performed for each time bin, indicated that this effect was 
significant from 2–5 s post outcome (Fig. 3a). Outcome surprise was 
also positively associated with an increase in pupil diameter (F(1,26) 
= 9.2, P = 0.005). The effect of surprise was observed slightly earlier 
than that of volatility, being significant from 1–3 s post outcome  
(P < 0.05, Bonferroni corrected; Fig. 3b). For each individual, we also 
calculated single trial-wise summary measures of pupil responsivity  
to volatility and outcome surprise. These were estimated using the 
mean beta-weight of the surprise and volatility regressors across 
the whole 6-s post-outcome period. Correlational analyses using 
these summary measures revealed that participants’ mean pupil 
response to trial-wise volatility predicted the degree to which they 
adjusted their learning rate between the volatile and stable blocks 
of the task (r(26) = 0.37, P = 0.05; Fig. 3c). In addition, participants’ 
mean pupil response to outcome surprise predicted the extent to 
which they showed choice reaction time slowing as a function of the 
 unexpectedness of the previous trial’s outcome (r(26) = 0.44, P = 0.02;  
Fig. 3d). These pupil dilation parameters may reflect changes in activity  
in the locus coeruleus norepinephrine system, although additional 
dopaminergic or cholinergic influences cannot be ruled out. The cur-
rent findings are consistent with the existence of a functional relation-
ship between the alterations in neurotransmission that underlie these 
pupilometry changes and the mechanisms that enable environmental 
statistics to be used to guide learning about the causal structure of the 
environment13–16.

Trait anxiety modulates the pupil response to volatility
As reported above, we observed that high trait-anxious individuals 
showed impoverished adjustment of learning rate between the stable 
and volatile blocks of the aversive learning task employed here, but 
did not show impoverished adjustment of choice reaction times fol-
lowing surprising outcomes. This is consistent with a specific deficit 
in the use of environmental volatility to adjust action-outcome updat-
ing and, through this, to guide decision-making. We were therefore 
interested in whether high trait-anxious participants would show a 
reduced pupil dilatory response to environmental volatility alone. 
This was indeed what we observed. Elevated trait anxiety was associ-
ated with a decreased mean pupil response to volatility (r(26) = −0.51, 
P = 0.005; Fig. 4a,b and Supplementary Fig. 8c,d). In contrast, there 
was no modulatory effect of trait anxiety on the mean pupil response 
to surprise (r(26) = −0.16, P = 0.4; Fig. 4c,d and Supplementary 
Fig. 8e,f). Together with the absence of any significant relationship 
between trait anxiety and the behavioral response to surprise, these 
findings are consistent with trait anxiety being specifically associated 
with an impoverished ability to process, and adapt to, changes in 
environmental volatility.

To rule out the possibility that the effects of volatility on pupil 
dilation post outcome, or the modulation of this by anxiety, were a 
result of changes in pupil reactivity with time on task, we reran the 
pupil analyses reported above with two additional control regressors 
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that represented the trial number in each block. Following the addi-
tion of these control regressors, the post-outcome pupil response 
to volatility (F(1,26) = 4.3, P = 0.049) and surprise (F(1,26) = 8.6,  
P = 0.007) remained significant and the relationship between trait anx-
iety and the mean post outcome pupil response to volatility became, if 
anything, stronger (r(26) = −0.52, P = 0.004; Supplementary Fig. 9). 
Similarly, inclusion of regressors representing the interaction of vol-
atility by outcome (shock versus no shock; Supplementary Fig. 10a),  

surprise by outcome (Supplementary Fig. 10b), and the interaction 
between volatility and surprise (Supplementary Fig. 11) did not 
alter the relationship between trait anxiety and the post-outcome 
pupil response to volatility, which remained robust in all cases  
(r(26) ≤ −0.49, P ≤ 0.007). Notably, the effect of volatility on 
post-outcome pupil dilation was not modulated by outcome 
type (Supplementary Fig. 10a), nor was the effect of surprise 
(Supplementary Fig. 10b).

We further addressed the possibility that 
high anxious individuals’ pupillary response 
does in fact track environmental volatility, 
but in a manner less like the Bayesian learner 

Figure 3 Post-outcome pupil dilation tracks 
both environmental volatility and outcome 
surprise. (a,b) Time courses for the effect of 
trial-wise estimates of volatility (a) and surprise 
(b) on pupil dilation following presentation 
of the outcome. The graphs show the mean 
across participants (n = 28) of the beta 
weights obtained by regressing post outcome 
pupil dilation against trial-wise estimates of 
environmental volatility and outcome surprise. 
Post-outcome pupil dilation was greater for 
trials in which environmental volatility was high 
(F(1,26) = 9.8, P = 0.004) and the outcome 
was surprising (F(1,26) = 9.2, P = 0.005). 
Asterisks indicate 1-s time bins in which the 
effect of volatility or surprise on pupil dilation 
post-outcome differed significantly from zero 
(Bonferonni corrected for multiple comparisons, 
corrected P values < 0.05, two tailed). The 
effect of trial-wise volatility was longer lasting 
and had a later onset than that of outcome 
surprise. (c) The degree to which an individual’s 
pupil tracked volatility (calculated as the mean 
beta weight across the 6-s post-outcome period) 
predicted change in learning rate between 
volatile and stable blocks (r(26) = 0.37,  
P = 0.05). (d) The degree to which an 
individual’s pupil tracked surprise predicted the 
extent of surprise-related choice reaction time 
slowing on the subsequent trial (r(26) = 0.44, P = 0.02). Shaded regions in a and b represent the s.e.m. Error bars in c and d represent the s.d. of the 
regression coefficients (beta weights) from the pupil analysis and the parameter estimates from the behavioral model for each subject.
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Figure 4 The relationship between trait anxiety 
and post-outcome pupil dilation as a function 
of trial-wise estimates of volatility and surprise. 
(a) The degree to which participants’ pupil 
dilation, post-outcome, tracked environmental 
volatility was negatively related to trait anxiety 
(r(26) = −0.51, P = 0.005). (b) Using a median 
split on participants’ trait anxiety scores, low 
anxious participants (n = 15) showed a clear 
pupil response to environmental volatility, 
whereas high anxious participants (n = 13) did 
not (asterisks indicate 1-s time bins in which 
Bonferonni-corrected t tests differed between 
the groups at P < 0.05 corrected, two-tailed). 
(c) Pupil response to outcome surprise was not 
related to individual differences in trait anxiety 
(P = 0.4). (d) This is illustrated using a median 
split on trait anxiety. Error bars in a and c 
represent the s.d. of the regression coefficients 
(beta weights) from the pupil analysis for each 
subject. Shaded regions in b and d represent 
the s.e.m.
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than low anxious participants, by conducting additional analyses 
using non-Bayesian estimates of environmental volatility and out-
come surprise (Supplementary Fig. 7b,c). These additional analyses 
replicated the main findings of an inverse relationship between trait 
anxiety and the effect of volatility, but not surprise, on the post out-
come pupil response.

Finally, we investigated the relationship between adaptation of 
learning between task blocks and baseline, or tonic, pupil dilation. 
Electrophysiological studies have revealed that the locus coeruleus 
norepinephrine system displays two modes of activity: periods of 
reduced tonic activity associated with increased phasic responses to 
salient stimuli and periods of increased tonic activity associated with 
reduced phasic responses17. Consistent with this observation and the 
suggested influence of norepinephrinergic activity on pupil dilation, a 
previous pupillometry study reported that reduced baseline pupil size 
(argued to reflect, at least in part, tonic norepinephrinergic activity) was 
associated with increased phasic pupil responses16. As reported above 
(Fig. 3), we observed a positive association between environmental 
volatility and the magnitude of the phasic post-outcome pupil response. 
We therefore tested whether there was also evidence for a reduction 
in tonic baseline pupil size during volatile periods and whether this 
predicted participant behavior, and varied as a function of anxiety.

Following previously described methodology16, we obtained a 
measure of the degree to which tonic pupil size varied as a func-
tion of trial-wise volatility by analyzing non-baseline corrected pupil 
data from the 1-s time bin before the outcome was presented (that is, 
the baseline period). There was no relationship between mean base-
line pupil size across the task and trait anxiety (r(26) = 0.1, P = 0.6). 
Across participants, periods of increased volatility were associated 
with reduced baseline pupil size (t(27) = 2.5, P = 0.02)16. However, 
differences between participants in the magnitude of baseline pupil 
size suppression were not significantly correlated with differences in 
learning rate between volatile and stable task blocks (r(26) = −0.14,  
P = 0.5), nor did it vary significantly as a function of trait anxiety 
(r(26) = 0.08, P = 0.7). Thus, only the phasic outcome-yoked com-
ponent of the pupillary response predicted participant behavior and 
correlated with trait anxiety.

DISCUSSION
In real life, a given action rarely results in the same outcome 100% 
of the time. Thus, it is important to be able to gauge how likely our 
actions are to produce good or bad outcomes, and to be able to know 
when to update our estimates of action-outcome contingencies in 
response to new experiences. Knowing whether to write off an unex-
pected aversive outcome as a chance event depends on whether we 
are in a quickly changing environment, where surprising outcomes 
should lead us to revise estimated contingencies rapidly, or a stable 
one, where unexpected outcomes are more likely to reflect noise in 
action-outcome relationships and we should revise our estimates 
more slowly6. Our results suggest that people are generally able to 
rationally adapt their learning about aversive outcomes on the basis of 
whether action-outcome associations are volatile or stable. However, 
individuals with high trait anxiety show an impoverished ability to 
do this. This difficulty in using information about the stability of 
action-outcome contingencies to correctly judge whether or not to 
repeat an action that has led to an unexpected aversive outcome may 
well lead high trait-anxious individuals to engage in poor decision-
making. It might also result in aversive outcomes being experienced 
as less predictable and less avoidable. This could in turn lead to an 
increase in anxiety-related symptomatology, and potentially even be 
involved in the onset or maintenance of anxiety disorders.

Non-luminance–related changes in pupil size are argued to reflect, 
among other influences, the activity of central arousal systems, includ-
ing the locus coeruleus–norepinephrine system15–17. Activity of this 
system is held to be closely linked to the processing of environmental 
volatility and the use of this to guide learning6,14. Consistent with this, 
we observed that participants showed a significantly greater increase 
in pupil dilation following trial outcomes in which environmental 
volatility was high. Furthermore, the degree to which participants’ 
post-outcome pupil dilatory response tracked environmental volatil-
ity was significantly correlated with the degree to which they adjusted 
their learning rate between stable and volatile blocks. Of greatest per-
tinence to our study, trait anxiety modulated this pupil response to 
volatility, with high trait-anxious participants showing a smaller effect 
of volatility on post-outcome pupil dilation. Additional studies involv-
ing pharmacological manipulation are required to determine whether 
this reflects an anxiety-related deficit in norepinephrinergic control of 
the mechanisms that enable environmental volatility to guide action-
outcome updating versus the effect of an upstream influence acting 
on the locus coeruleus–norepinephrine system.

Notably, elevated trait anxiety was not associated with an altered 
pupil response to outcome surprise. Trait anxiety also did not modu-
late behavioral responses to surprising outcomes, that is, there was no 
influence of trait anxiety on choice reaction time slowing on trials fol-
lowing surprising outcomes. These findings suggest that the reduced 
influence of environmental volatility on action-outcome contingency 
learning in high trait-anxious participants is unlikely to merely be a 
secondary consequence of a more general insensitivity to surprising 
outcomes. Rather, individuals with high levels of trait anxiety appear 
to respond normally to the experience of unexpected aversive out-
comes, but are unable to utilize higher order (that is, block dependent) 
statistical information present in the distribution of these outcomes 
to modulate the updating of action-outcome contingency estimates. 
These findings also indicate that any anxiety-related deficit in the 
norepinephrinergic control of learning mechanisms would have to 
be fairly specific in nature.

A number of open questions remain. The first concerns whether 
anxiety is specifically linked to difficulty in using environmental 
volatility to update action-outcome estimates when possible out-
comes are negatively valenced. A reward-based version of the task 
used here revealed no significant relationship between trait anxiety 
and use of the environmental volatility to update learning (P > 0.1, 
Supplementary Fig. 2b). However, although this raises the possi-
bility that anxiety is associated with a specific difficulty in aversive 
learning, it is difficult to draw conclusive inferences from this null 
result, especially as the effect of anxiety on the change in learning 
rate between stable and volatile task blocks was in the same direction 
in both tasks and the difference in the strength of this relationship  
between tasks was not significant (P > 0.1, Supplementary Fig. 2b). 
In addition, the reward task used a secondary reinforcer (financial  
reward), whereas our aversive learning task adopted a primary 
reinforcer (electrical stimulation). Thus, the specificity of the  
anxiety-related deficit that we observed to aversive versus reward-
based learning and to learning in the context of primary versus 
secondary reinforcers remains to be established.

As mentioned earlier, there is also an interesting parallel between 
the findings reported here and those from a recent classical fear con-
ditioning study, where high trait-anxious individuals showed impov-
erished ability to differentially regulate conditioned fear responses 
across contexts that differed in stimulus-stimulus contingencies12. 
In this prior study, high trait-anxious participants also appeared to 
be less able to adapt to the associative statistics of different contexts.  
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Future work should address whether there is indeed a common deficit 
in responding to changes in aversive stimulus-stimulus and action-
outcome contingencies in high trait-anxious individuals, and whether 
this has a causal role in the anxiety experienced by these individuals as 
well as their elevated risk for developing full blown anxiety disorders. 
In addition, an important question is whether the anxiety-related 
deficit in contingency learning reported here, and potentially entailed 
in prior findings12, is unique to anxiety or reflects a common defi-
cit shared with risk for depression. This question reflects increasing 
awareness of the comorbidity between anxiety and depressive disor-
ders and the need to identify which of those biological mechanisms 
identified as potentially conferring vulnerability to disease are unique 
to anxiety or depression versus common to both24.

In conclusion, our findings reveal that trait vulnerability to anxi-
ety is associated with a deficit in the use of higher order statistics 
about the causal structure of adverse environments to guide deci-
sion-making. High trait-anxious individuals did not differ from 
low trait-anxious individuals in their mean learning rate or in their 
behavioral or pupillary response to surprising adverse outcomes. Nor 
did they show altered preferences for minimizing shock probability 
versus shock magnitude. Instead, their pattern of decision-making 
was indicative of a selective difficulty with differentially updating 
action-outcome contingencies as a function of whether the cur-
rent environment was stable or volatile. Our pupilometry data also 
confirmed a specific insensitivity to environmental volatility and 
raised the possibility that this might reflect impoverished modula-
tion by environmental volatility of activity in the locus coeruleus– 
norepinephrine system.

In everyday life, determining whether, given the current context, 
an unexpected negative outcome is probably a chance event or some-
thing likely to occur again if the action that led to it is repeated may 
be essential to personal relationships and work place judgments.  
A deficit in this aspect of learning may have an important maintain-
ing, or even etiological, role in the anxiety experienced by high trait-
anxious individuals. We have taken a step toward elucidating this 
deficit, and hope to have illustrated how computational models can 
be integrated with behavioral and pupillometry analyses to begin to 
identify the mechanisms underlying disrupted decision making in 
high trait-anxious individuals.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Participants. 31 (22 female) English speaking, healthy participants, aged between 
18 and 40 years (mean = 23.7, s.d. = 5.6), were recruited from the local com-
munity. One was a replacement for a prior participant where data was lost. The 
number of participants recruited was based on estimates of samples sizes from 
prior studies using similar tasks or studying effects of trait anxiety8,12,23. Pre-
screening on the trait subscale of the Spielberger State-Trait Anxiety Inventory 
(trait-STAI)20 was conducted to achieve an approximately even number of partici-
pants with scores in the ranges 20–30, 30–40, 40–50 and >50. Exclusion criteria 
included current receipt of psychoactive medication or psychological therapy, 
neurological illness or suicidal symptomatology. Data from one participant was 
lost, as noted above, due to equipment failure. Analyzable eye tracking data was 
obtained on all but two of the remaining participants.

general procedure. The study was approved by the Oxford University Research 
Ethics Committee. Following provision of written informed consent, par-
ticipants completed two learning tasks; the novel aversive learning task and a 
parallel reward learning task. The latter was included to establish replication 
of cross-participant effects of the volatility manipulation in a reward context 
(as previously reported8), the current focus of interest being the extension 
of this to learning in an aversive context. The reward task is not reported in 
detail here; we note that cross-participant effects of volatility upon learning 
were indeed replicated but no significant effects of trait anxiety were observed  
(Supplementary Fig. 2). The order of tasks was counterbalanced across 
 participants. There was no effect of task order.

The tasks were presented on a cathode ray monitor connected to a compu-
ter running Presentation software version 15.1 (Neurobehavioral Systems). 
Participants’ heads were stabilized using a head and chin rest placed 70 cm from 
the screen. An Eyelink 1000 system (SR Research) was mounted on the headrest 
and collected eye position and pupil size data from the right eye at a rate of 1,000 
Hz. Electrical stimulation was delivered as trains of 2-ms pulses using a DS7AH 
constant current electrical stimulator (Digitimer). This was controlled by the 
stimulus presentation computer and connected to the volar surface of partici-
pants’ non-dominant forearm using a bipolar electrode.

the aversive learning task. The aversive learning task (Fig. 1) was adapted from 
a structurally equivalent reward learning task previously successfully used to 
examine the impact of changes in environmental volatility upon rate of learn-
ing8,11. It comprises two blocks of 90 trials in which participants choose between 
two stimuli that are probabilistically associated with receipt of an electrical shock 
(Fig. 1). In one block, choice-outcome contingencies are stable (shape A results 
in a shock 75% of the time, shape B 25% of the time). In the other block, choice-
outcome contingencies are volatile, switching every 20 trials. The magnitude 
of shock received if a given shape is chosen and does result in a shock on that 
trial is specified separately for each shape and varies from trial to trial (more 
details are given below). These key details are important for the following reasons:  
(1) trial-wise manipulation of magnitude of shock leads to trial-wise changes in 
the relative expected value of each shape and enables all 90 trials of each block 
to contribute to estimation of the learning rate within that block (rather than 
just ‘start’ (of block) trials and ‘switch’ trials (those following changes in action-
outcome contingency within the volatile block)); (2) this in turn allows us to 
maximize trial number within blocks as opposed to the number of separate 
blocks—this is critical to establish the extent to which participants are able to 
modulate their learning rate as a function of the volatility of action-outcome 
contingencies, as volatility can only be estimated across a large number of trials 
(see the Supplementary Modeling Note for an illustration of the rate at which 
information on volatility may be accrued).

task details. On each trial, participants were presented with a fixation cross 
flanked by two shapes which were offset by approximately 7° visual angle. 
Participants’ task was to choose one of the two shapes, one of which would 
result in the delivery of an electrical shock. In the stable block, one of the two 
shapes predicted the occurrence of the shock with a probability of 75%, the other 
shape resulting in shock delivery on the remaining trials. In the volatile block, 
the shape that most predicted the shock switched every 20 trials (with one shape 
predicting it with a probability of 80%, the other with a probability of 20%). The 
magnitude of shock that would be delivered if administered was specific to each 

shape and displayed as a two digit number (between 01 and 99) in the shape’s 
center. On each trial, the magnitude value for each shape was chosen from two 
separate random distributions. Following a variable period of time (drawn from 
a Poisson distribution, min = 1 s, mean = 2 s), the central fixation cross changed 
to a question mark, indicating that participants could respond. Participants had 
up to 4 s to choose one of the two shapes. After the participant responded, there 
was a jittered interval (min 2 s, mean 4 s) before outcome presentation. In the 
outcome phase of all trials, the shape resulting in the shock was shown at fixation, 
between the two options, for two seconds (Fig. 1). If participants had chosen that 
shape, a shock was delivered at the beginning of this period (the intensity of the 
shock being determined by the magnitude associated with the chosen shape). 
Following this, the shapes were replaced by crosses (a single cross at fixation,  
and two double crosses either side) and there was a further jittered interval  
(min 2 s, mean 4 s) before the next trial began. Participants completed 180 trials,  
90 in each block. The two task blocks were completed sequentially with no break 
between them and with no explicit cuing as to the division of the task into two 
distinct blocks. Equal numbers of participants were randomly assigned to com-
plete either the stable or volatile block first.

Stimuli. Visual stimuli were constructed to minimize variations in luminance 
during the course of the task. All stimuli were shaped Gabor patches, with an area 
of ~16° squared visual angle (that is, approximately 4° × 4°, matched on area across 
shape types), the same mean luminance as the background (83.9 ± 0.5 Cd m−2),  
and a spatial period of 0.5° visual angle. Each participant completed the task using 
either circle and square or triangle and cross shaped gabor patches.

calibration of electrical shocks. Prior to completion of the learning task, a cali-
bration procedure was conducted to equate subjective pain across participants, 
as far as possible. During calibration, pain was reported by participants using a 
10 point scale on which 1 was defined as “minimal pain”, 10 as “worst possible 
pain” and 7 as the worst pain that the participant could tolerate receiving up to 
20 times during the task. The amplitude of a single 2-ms period of electrical 
stimulation was increased from zero until it produced a sensation rated as 1/10. 
The amplitude of a single 2-ms pulse was then kept at this level with the intensity 
of the shock gradually increased up to a subjective intensity of 7/10 by increasing 
the number of 2-ms pulses delivered in a train. This resulted in a single pulse pro-
ducing 1/10 pain and a maximum number of pulses, delivered in a train, which 
produced 7/10 pain. Across participants, the maximum number of pulses used 
ranged from 8 to 48, with no relationship between this measure and trait-anxiety 
(r(28) = 0.18, P = 0.3). Participants subsequently completed 14 trials during which 
the intensity of electrical shock was randomly varied by changing the number of 
pulses delivered in a train between 1 and the number required to produce sub-
jective pain of 7/10. Participants’ subjective pain ratings of these different levels 
of shock were fitted to a sigmoid curve. This was used to determine the number 
of pulses given for each magnitude shock level (1–99) during the task (that is,  
a magnitude of ‘1’ would receive a single 2-ms pulse, a magnitude of ‘99’ would 
receive the number of pulses required to produce a subjective pain rating of ‘7’, 
all other magnitude level / number of pulse conversions were calculated using 
the sigmoidal fit (Supplementary Fig. 1)).

Pupil dilation preprocessing. Pupil diameter measurements were collected using 
the Eyelink 1000 system as described above, at a sampling rate of 1,000 Hz. This 
data was cleaned with blinks removed using the Eyelink system’s built in filter. 
Missing data points were linearly interpolated (trials in which more than 50% 
of the eyetracking data was interpolated were not used in subsequent analyses, 
mean = 16% of trials). The resulting trace was subjected to a low pass Butterworth 
filter with a cutoff of 3.75 Hz and then z transformed across the session14. Data 
were extracted from each trial using a window based on the presentation of the 
outcome. This included a 1-s baseline period before the presentation of the out-
come, and a 6-s period following outcome presentation (this comprised the 2-s 
period when the shape associated with the shock was shown and the subsequent 
4 s following removal of outcome information). Baseline correction was achieved 
by subtracting the mean pupil size during the baseline period from each time 
point post outcome.

An additional analysis of tonic baseline pupil diameter was also conducted. 
The pupil data submitted to this analysis was preprocessed in an identical manner 
to that described above, except for the absence of baseline correction16.
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decision choice data: estimating change in learning rate. The primary measure 
of interest was change in learning rate between stable and volatile task blocks. 
This was calculated by fitting a simple learning model, as previously described8, 
to participants’ choice data. Details of the model, which consisted of a Rescorla-
Wagner predictor10 coupled to a softmax based action selector, and the process 
by which the model parameters were fitted to participant choice data are provided 
in the Supplementary Modeling Note. In this note, we also provide evaluation 
of the model’s performance (ability to account for participant choice) and formal 
comparison of its fit with that of alternative models.

calculating trial-wise estimates of surprise and volatility, using a Bayesian 
learner, for use in reaction time (Rt) and pupillometry analyses. Findings from 
previous decision-making studies suggest that human participants approximate 
an optimal Bayesian learner in their use of environmental statistics to implicitly 
guide decision choice. In particular, their choice behavior is consistent with use of 
trial-wise Bayesian estimates of environmental volatility to determine the extent 
to which to update estimates of outcome likelihood and to in turn use this to 
guide the action they take8,11. Given this, we used a Bayesian learner (following8) 
to calculate trial-wise estimates of volatility (Supplementary Modeling Note). 
We sought to establish whether these estimates would predict trial-wise changes 
in the pupil response to outcome presentation. This prediction was informed 
by recent findings14 and made in light of the suggestion that the pupil dilatory 
response indexes activity in the locus coeruleus norepinephrine system15–17, 
which has been argued to be sensitive to environmental uncertainty6.

The extent to which an outcome is ‘surprising’ or unexpected is effectively 
an unsigned prediction error and has been linked to slowing on trials following 
those where the outcome is highly surprising21. The Bayesian learner was also 
used to calculate trial-wise estimates of surprise. These were estimated as the 
negative logarithm of the conditional probability of the outcome observed given 
the prior estimated probability of the outcome (that is, the Shannon information 
of the outcome22; Supplementary Modeling Note). These trial-wise estimates 
of surprise were entered into regression analyses of pupil response to outcome 
presentation and also into regression analyses examining decision choice reaction 
time as a function of outcome surprise on the prior trial.

decision choice reaction time analyses. For the reaction time analyses, data were 
excluded for trials where response times were so short (<200 ms) that they were 
unlikely to reflect a genuine choice (mean = 2% of trials). Reaction time data from 
all remaining trials were log transformed before being entered into regression 
analyses. The trial-wise measure of surprise on each trial n was regressed against 
the reaction time for trial n+1 on a participant-wise basis. Additional regressors of 
no interest were included to control for other task parameters that could influence 
reaction time. These comprised outcome (0, 1, where 1 = shock delivered), shock 

magnitude (1–99), the pascalian (expected) values of the chosen and unchosen 
stimulus, and the Bayesian estimate of the volatility of the current trial. These 
participant-wise regression analyses output a beta weight for each participant 
which indicated the extent to which their choice reaction time on trial n + 1 
was influenced by how surprising the previous outcome (on trial n) had been. 
These beta estimates were entered into a second-level one sample t test (to exam-
ine effects of outcome surprise on subsequent trial choice reaction time across 
participants) and a second-level Pearson product moment correlational analysis  
(to examine the modulation by trait anxiety of the effect of outcome surprise upon 
subsequent trial reaction time). For these and all other analyses reported in the 
paper, before parametric tests were conducted, the Kolomogorov-Smirnov test 
was used to ensure the data was distributed normally. All statistical tests reported 
were two-tailed unless specified otherwise.

Pupil dilation analyses. Preprocessing of the pupil data is described above, 
together with procedures for baseline correction. Preliminary checks were con-
ducted to ensure that the main analyses were unlikely to be confounded by anxiety- 
related differences in fixation or saccades. These checks revealed that there was 
no significant relationship between trait anxiety and the number of saccades  
(P values > 0.25), or the time spent in fixation (P values > 0.35) in any of the 1-s 
time bins of the outcome period. Further, there was no relationship between 
these parameters and the degree to which participants altered their learning rate 
between volatile and stable task blocks (number of saccades: P values > 0.18; time 
spent in fixation: P values > 0.12).

Regression analyses were conducted to examine the effects of trial-wise volatil-
ity and outcome surprise on pupil dilation following outcome presentation. The 
post-outcome period was sampled using 6,000 1-ms bins. Regression analyses 
were conducted for each of these bins, with Bayesian estimates of trial-wise vola-
tility and surprise entered as regressors of interest; outcome (0, 1, where 1 = shock 
delivered), shock magnitude (1–99), and the pascalian values of the chosen and 
unchosen stimulus were entered as control regressors. The resultant timeseries of 
beta-weights for volatility and surprise were down-sampled to give beta estimates 
of the effects of surprise and volatility on pupil dilation for six sequential one 
second time bins across the outcome period. These beta values were entered as 
the dependent measure into analyses of variance (ANOVAs), one for surprise and 
one for volatility. Time bin was entered as a within-subject factor and block order 
(stable versus volatile block first) as a between subject variable. Cross time bin 
summary measures of pupil responsivity to trial volatility and outcome surprise 
were also calculated. These were used for correlational analyses against both 
behavioral indices of interest and our between subject measure of trait anxiety. 
Additional graphical representation of the effects of trait anxiety was achieved by 
dividing participants into two groups using a median split on trait anxiety scores, 
(Fig. 4, and Supplementary Figs. 8 and 9).
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Supplementary Figure 1 

Calibration of Electrical Shocks. 

Before each participant completed the aversive learning task, subjective pain scores (left hand axis) were collected for different 
objective strengths of electrical shock (x axis), see online methods. A 10 point scale was used for subjective pain where 1=minimal 
pain, 10=worst possible pain. No shock that exceeded a subjective level of 7 was applied. A sigmoid curve fitted to this data was used 
to equate the subjective level of pain experienced during the learning task across participants. The graph shows data points (circles) 
and the fitted sigmoid (black line) from one participant. In the task, the shock magnitude associated with each shape was varied on a 
trial-to-trial basis from 1-99, where 1 equated to a subjective pain level of 1, and 99 to a subjective pain level of 7. Magnitude values 
between these extremes were calculated using the sigmoidal fit. This is illustrated here by the dashed line, which shows how the 
objective strength of the electrical stimulus (x axis) corresponding to a desired ‘magnitude’ of 80 (right hand axis) would be calculated 
for this participant. 

Nature Neuroscience: doi:10.1038/nn.3961



 

Supplementary Figure 2 

Effects of volatility upon participants’ learning rates in a structurally equivalent reward task. 

In addition to the aversive learning task, reported within the main manuscript, participants also completed a structurally equivalent 
reward learning task. Here the two shapes chosen between had different probabilities of leading to winning points, with the magnitude 
of reward points being unique for each shape and varying randomly between 1 and 99 across trials. Following the task the points 
participants had won were converted into a monetary reward (either £5 or £10). (a) Participants’ choices during the stable and volatile 

blocks of the reward task were fitted with the same Rescorla Wagner learning model used in the aversive task. Estimates of individual 
participants’ learning rates are displayed (circles), using a logarithmic scale, separately for the stable and volatile b locks for the two task 
schedules (Schedule 1 = stable task block first, n = 16, Schedule 2 = volatile task block first, n = 15). Black lines display mean (+–SEM) 
of participants’ estimated learning rates, grey dotted lines link the learning rates in volati le and stable blocks for each participant. 
Participants showed higher learning rates in the volatile versus stable blocks regardless of the order in which they were completed, 
F(1,29) = 15.3, p = 0.001, replicating previous results

8
. (b) The relative log learning rate for the volatile versus the stable blocks (i.e. 

log(LR in volatile block) – log(LR in stable block)) was not significantly correlated with participant trait anxiety, r(29) = –0.16, p = 0.4. It 
should be noted that the difference in the effect of anxiety on learning rate for this reward learning task and the aversive learning task 
reported in the main manuscript was also not significant, F(1,28) = 0.57, p = 0.46. This hence limits the conclusions that can be drawn 

regarding the specificity of the anxiety-related deficit in adjusting learning rate to cases where outcomes are aversive as opposed to 
reward-related. Error bars represent the standard deviation of the estimated parameters from the behavioral model for each participant. 

Nature Neuroscience: doi:10.1038/nn.3961



 

Supplementary Figure 3 

Influence of potential shock magnitude and prior outcome history on actual and simulated behavior choice as a function of block 
volatility (a,b) and participant anxiety (c-f). 
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Regression analyses were conducted on a participant by participant basis to examine the extent to which current shock magnitude 
linked to each shape and the outcomes of the five previous trials predicted choice of shape A versus shape B (e.g. circle versus 
square) on a given trial. The dependent variable was participant choice (a,c,d) or model choice (b,e,f) on trial ‘n’ (coded as 1 if the 

subject/model chose shape A (e.g. circle) and 0 if shape B (e.g. square)). For the model choice regressions, the coupled Rescorla 
Wagner (RW) predictor and sofmax action selector learning model was used to simulate choice behavior on a trial to trial basis, using 
the blockwise estimates of the free parameters (for learning rate, decision temperature and inverse temperature) previously calculated 
for each participant (see online methods). In each regression analysis, predictor variables comprised shock magnitude for shape A, 
shock magnitude for shape B, and outcome for trial n-1 to n-5 (coded as 1 if shape A was associated with the shock). As the distribution 
of parameter estimates across participants was non-normal, median values (horizontal black lines) and interquartile ranges (boxes) are 
presented. (a) Influence of the predictor variables on subject choice, estimated separately for trials in the stable (blue boxes) and 

volatile (red boxes) blocks. The impact of previous outcomes decreases across time and - consistent with the higher learning rate used 
by participants in volatile blocks - the impact of prior outcomes on shape choice is greater for more recent trial outcomes (n-1, n-2) in 
the volatile versus the stable block. (b) A parallel analysis was run on the model-derived choices. The similar pattern in (b) as for (a) is 

as expected given the good fit of the RW & softmax action selector model to the behavior data (see Supplementary Modeling Note). 
Plots c and d illustrate how the influence of prior outcomes on behavioral choice as a function of block volatility differs between low and 

high trait anxious individuals (as defined using a median split, for ease of graphical illustration). As expected given the inverse 
relationship between trait anxiety and change in learning rate between stable and volatile blocks (Fig 2b), a greater difference between 
blocks in the effect of recent prior outcomes on choice behavior is observed for low (c) than for high (d) anxious participants. Plots e 
and f illustrate that a parallel pattern is observed when using simulated data from the RW and softmax action selector model. In 
summary, panels a, c and d illustrate, in a model-free manner, the key behavior of participants assessed by the learning rate analyses 
reported within the main manuscript. Additionally, the plots shown in panels b, e and f indicate that the coupled RW predictor and 

softmax action selector is able to reliably capture these behaviors. 
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Supplementary Figure 4 

Relationship between trait anxiety and Bayesian volatility when multiple parameters, including a decay function, are allowed to compete 
for influence over a dynamic learning rate. 

As described in the Supplementary Modeling Note, a more complex model, designed to capture a variety of potential influences on  
learning rate, was additionally fitted to choice data at the level of the individual participant. On each trial, learning rate was estimated as 

a weighted sum of three terms: the mean learning rate across trials ( ), the trial-wise demeaned Bayesian volatility (subject 

specific weight = ) and the trial-wise demeaned exponential decay function (subject specific weight = ). These parameters 

along with the slope of the exponential function( λ ) and the decision temperature and risk preference terms from the selector model 
were fitted to participant behavior across the entire task. The resulting parameter estimates were then correlated, across participants, 

against trait anxiety. Of the six parameters fitted to participants’ behavior, only the weight of the volatility term ( ) was 

significantly correlated with trait anxiety, illustrated above r(28) = –0.37, p = 0.04, with none of the other parameters showing a 

significant relationship with trait anxiety, ps>0.2. Consistent with the findings of the main paper, this result indicates that, even when a 
variety of factors were allowed to influence a dynamic learning rate, trait anxiety was uniquely associated with reduced influence of 
environmental volatility upon learning rate.   Error bars represent the standard deviation of the parameter estimates for each subject. 
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Supplementary Figure 5 

Shock receipt on difficult trials (where the two options were close in expected value) was positively correlated with trait anxiety (a), and 
negatively correlated with both change in learning rate between stable and volatile blocks (b) and modulation of post-outcome pupil 
dilation by trial volatility (c). 

The advantage of flexible adaptation of learning rate to changes in environmental volatility is that it allows learning to occur at an 
optimal rate for a given environment. As subjects with higher levels of trait anxiety were less able to adjust their learning between stable 
and volatile blocks, they would be predicted to more often incorrectly judge the action most likely to result in shock. This in turn would 
be most likely to have an observable effect on trials where the two options were close in expected value. Following Behrens et al

8
, we 

defined ‘difficult trials’ as those in which the Pascalian value of the two shapes differed by less than 5. (a) Trait anxiety was positively 
correlated with the proportion of ‘difficult’ trials on which shock was received. (b) We further confirmed that this ‘proportion of difficult 

trials where shock was received’ index of performance was negatively related to adjustment of learning rate between stable and volatile 
task blocks, r(28) = –0.31, p = 0.05, 1-tailed (b), as well as to the pupil response to trial volatility, r(26) = –0.41, p = 0.01, 1-tailed (c).  
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Supplementary Figure 6 

No significant association was observed between Trait Anxiety and Risk Preference or Inverse Decision Temperature. 

The softmax action selector contained two free parameters: risk preference (the tendency to minimize shock probability versus shock 
magnitude) and inverse decision temperature (the degree to which a participant used expected values, i.e. estimated shock probability 
x shock magnitude, for each shape to guide choices). These parameters were estimated from participants’ choices in the stable  and 
volatile blocks of the aversive learning task (see Online Methods). Panels a-d show the relationship between the log transformed 

parameter estimates and trait anxiety. There was no significant relationship between trait anxiety and risk preference as calculated for 
either the stable (a; r(28) = –0.23, p = 0.2) or volatile (b; r(28) = –0.09, p = 0.6) task blocks. Trait anxiety was also not associated with 

the mean value of this parameter across blocks or with the difference score between blocks (ps > .1). There was also no relationship 
between trait anxiety and inverse decision temperature as estimated for the stable (c; r(28) < 0.01, p = 0.99) or volatile (d; r(28) = 0.24, 
p = 0.2) blocks. Trait anxiety was also not associated with mean decision temperature across blocks, or with the difference in decision 
temperature between blocks (ps > .1). Error bars represent the standard deviation of the parameter estimates for each subject. 
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Supplementary Figure 7 

Analyses of reaction time and pupil dilation data using non-Bayesian estimates of trial volatility and outcome surprise 

Analyses of the pupil dilation and reaction time data reported in this paper utilized estimates of trial volatility and outcome surprise  
derived from a Bayesian learner (see Supplementary Modeling Note).  Here, we replicated these analyses using non-Bayesian 
estimates of volatility and surprise. Volatility was simply coded as ‘1’ for all trials in the volatile block and ‘0’ for all trials in the stable 
block. In addition, a non-Bayesian surprise regressor was created by coding all trials in which the less predictive stimulus was 
associated with the shock as being high surprise (‘1’) and the other trials as low surprise (‘0’).  These measures of volatility and surprise 
were entered into the regression models predicting reaction time slowing (a) and pupil response (b,c) together with the other, control, 

predictor variables previously used. As in the main analyses, the beta estimates for these regressors were correlated against trait 
anxiety. The results of these additional analyses replicated those reported in the paper: trait anxiety did not influence the degree to 
which participants slowed their response following a surprising outcome, r(28) = –0.02, p = 0.9 (a). Further trait anxiety was associated 
with a significantly reduced pupil response during high volatility trials, r(26) = –0.51, p = 0.005 (b), but showed no significant relationship 
with the pupil response to surprising outcomes, r(26) = 0.07, p = 0.7 (c). In summary, the relationship reported between trait anxiety and 
effects of volatility and outcome surprise held regardless of the manner in which these indices were calculated. Error bars represent the 
standard deviations of the parameter estimates from the behavioral model (a) and the regression coefficients (beta weights) from the 
pupil analysis (b, c) for each subject.    
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Supplementary Figure 8 

Baseline corrected, z-transformed eyetracker traces from the aversive learning task. 

(a). Mean pupil dilation across participants separated into trials in which shock was administered or no shock was administered. (b). 

Mean pupil dilation across trials shown separately for high and low trait anxious participants. Effect of volatility on pupil dilation shown 
separately for low (c) and high (d) trait anxious participants. Effect of surprise on pupil dilation shown separately for low (e) and high (f) 

trait anxious participants. NB for illustration, participants have been separated into high and low anxious groups based on a median split 
on trait anxiety scores. Similarly trials were classified as high/low volatility or surprise based on a median split on these variables. Lines 
show mean value (across participants) of z-transformed, baseline corrected pupil diameter. Shaded regions represent SEM. 
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Supplementary Figure 9 

The relationship between trait anxiety and post outcome pupil dilation as a function of trial-wise estimates of volatility, controlling for trial 
number within each block. 

This figure illustrates the same analyses as those described in Figure 4 of the main manuscript with the exception that regressors 

coding for the trial number within each task block have been included in the participant-wise regression analyses of the effect of 
volatility on post outcome pupil dilation. The results illustrated in Figure 4 remain robust with the inclusion of these extra control 

parameters. Specifically, a strong negative correlation between trait anxiety and the effect of volatility upon pupil dilation post outcome 
is still observed (a), r(26) = –0.5, p = 0.004. As before, this is driven by low but not high trait anxious participants showing a modulatory 
effect of volatility on the post outcome pupil response (b), a median split on trait anxiety levels is used here as in Figure 4. Asterisks 
indicate 1s time bins in which Bonferonni corrected t-tests differed between the groups at p < .05 corrected, 2-tailed. Error bars in panel 
a represent the standard deviations of the regression coefficients (beta weights) from the pupil analysis for each subject. Shaded 
regions in panel b represent the standard error of the mean. 
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Supplementary Figure 10 

Results from additional pupil analyses investigating the interaction between outcome (shock received versus no shock received), and 
volatility (a) and surprise (b). 

The delivery of a shock causes a large dilation of participants’ pupils (Figure S8a). In order to determine whether effects of volatility and 

surprise were modulated by outcome (shock received versus no shock received), we reran the pupil regression analyses descripted in 
the main manuscript with additional regressors encoding the interaction between volatility and outcome and the interaction between 
surprise and outcome. Neither interaction term had a significant influence on pupil dilation (t-tests of mean regressor values against 0, p 
> 0.1 for all time bins). Consistent with this, adding these terms to the model reduced the goodness of fit of the model by an adjusted R

2
 

of 0.0002. Shaded areas represent the standard error of the mean. 
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Supplementary Figure 11 

Interaction of estimated trialwise volatility and surprise on pupil dilation post outcome. 

The pupil analysis was rerun with the inclusion of a surprise x volatility interaction term. There was no significant interaction of surprise 
x volatility upon pupil dilation in any of the 1s post-outcome time bins (t-test of mean regressor value against 0, p > 0.3 for all time bins). 
While the post-outcome main effect of surprise on pupil dilation precedes that of volatility (Figure 3), trialwise volatility changes very 

slowly (see Supplementary Modeling Note) – i.e. the volatility of a given trial n and that of the following trial n+1 is highly correlated (r > 
.9). Hence this regression analysis should capture any effect of volatility on trial n on the response to surprise in trial n+1. Shaded areas 
represent standard error of the mean. 
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Supplementary Modeling note 
 

 
Decision choice data: estimating change in learning rate. 

The primary measure of interest in this paper was change in learning rate between stable and 

volatile task blocks. This was calculated by fitting a simple learning model8 to participants’ choice 

data which consisted of a Rescorla-Wagner predictor10 coupled to a softmax based action selector. 

The predictor updated its estimate of outcome probabilities using the equation: 

 

Here r( +1) is the estimated outcome probability for the  +1st trial, r( ) is the estimated outcome 

probability for the  th trial, α is the learning rate and ε( ) is the prediction error on the  th trial. 

The selector transforms these predictions into action probabilities as follows. First, it estimates the 

negative value or ‘aversiveness’ of the two options. This is mathematically equivalent to estimated 

value for reward versions of the bandit task but reflects the fact that the outcome concerned (shock 

administration) is negatively valenced. Hence a high probability large magnitude shock is of high 

‘negative’ value. The equation below assumes, for ease of reference, that the circle and square 

stimuli were used in the task: 

 

 

Here   circle( +1)  and square( +1) are the estimated negative values of the stimuli on the  +1st trial, 

circle( +1) and square(i+1) are the known shock magnitudes for the two stimuli, and (r, γ) is a linear 

transform within the bounds of 0 and 1: 

 

The risk preference parameter γ allows the model to place greater weight on outcome magnitude 

(γ < 1) or outcome probability (γ > 1) when calculating the expected value. Effectively, this allows 
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the model to flexibly capture the extent to which a given participant prefers to minimize the 

probability or the magnitude of potential shocks. 

Given, as outlined above, that the estimated values are negative (the probability x 

magnitude of an aversive outcome), the final action probabilities were generated using the following 

probability distribution: 

 

Here β is the inverse decision temperature and controls the degree to which the expected values are 

used in determining the shape chosen.  

In total, the combined predictor and selector model has 3 free parameters (α, β, γ). These 

parameters were estimated separately for the stable and volatile blocks, for each participant, as in 

prior modeling of the structurally equivalent reward task8. Parameter estimates were obtained by 

calculating a joint posterior probability density function over all three parameter values, given the 

choice behavior of the participant. The values of the parameters were discretized in the joint 

function using the following limits: learning rate was represented using 30 points spaced equally 

from log (0.01) to log(1), risk preference using 15 points ranging from log(0.1) to log(10) and inverse 

temperature using 20 points ranging from log(1) to log(100).  Individual parameter estimates (and 

the standard deviation (SD) of those estimates) were then defined as the expected value (and SD) of 

the marginal probability density function over the given parameter, obtained by direct integration8. 

We note that the SD of individual level parameter estimates is represented by error bars on the 

scatter plots in Figures 2-4 and Supplementary Figures S2, S6 and S9. For completeness, we 

examined whether learning rates for the volatile and stable blocks differed in their estimation noise 

(i.e. the SD of the parameter estimates), and whether this varied as a function of trait anxiety. Of 

note, unlike the estimated parameters themselves, the SDs of the estimates are highly positively 

skewed requiring non-parametric statistical tests to be adopted in these analyses. Using a related 
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samples sign test, across participants, there was no significant difference in the standard deviation 

of the learning rate parameter estimates for the stable versus volatile blocks (p=0.1). Further, there 

was no relationship between trait anxiety and the standard deviation of the learning rate parameter 

estimate for either the stable (Spearman’s rho = 0.01, p = 0.9) or volatile (Spearman’s rho = 0.03, p = 

0.9) task blocks. 

When fitting the model parameters to participant choice, the first 10 trials of each block 

were omitted to allow comparison with the eyetracking data (here, initial trials were excluded to 

avoid luminance related changes in pupil size at the beginning of the blocks14). Additionally, trials in 

which no response was made were excluded (mean = 0.5% of trials). As the three free parameters 

are multiplicative (i.e. they act to multiply value or probability terms in the equations presented 

above), their logarithms were used when testing their relationship, across participants, with trait 

anxiety. Similarly change in the parameters between blocks was calculated as the difference of their 

log values.  

An illustration of the ability of the model to recapitulate participant choice is provided in the 

figure below, which presents learning curves derived from participant choice on top of those derived 

from the model. 
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Learning Curves Illustrating Participant and Model Choice During the Learning Task. The plot 

shown here overlays the choice behavior of participants who completed the “stable first” task 

schedule (red line) or the “volatile first” task schedule (blue line) with the output (i.e. probability of 

choosing shape A) of the behavioral (Rescorla Wagner & Softmax Action Selector) model (dotted 

grey/black lines). In order to more clearly illustrate the effects of learning on participant choice and 

model output, the effect of shock magnitude (which varies randomly across trials) has been reduced 

by smoothing both participant choices and model predictions using a running average of 10 trials 

(i.e. this reduces the trial by trial variations attributable to changes in shock magnitude while 

preserving the lower frequency effects of learning). The model output was produced by running the 

behavioral model once for each participant, using the individually fitted parameter values, on the 

task trial sequences. As can be seen the model closely describes participant behavior during the task 

for both schedules. 

To more formally test the model’s predictions of participant behavior, we discretized the model’s 

predictions (i.e., on a given trial, if it gave >50% likelihood that a participant would choose option A 

this was labeled as correct prediction of choice if the participant choose A).  This inevitably leads to a 

relatively coarse measure of model performance, as trials where the model gives 90% likelihood of 

option A being chosen and 51% likelihood of option A being chosen are treated the same. 

Nevertheless, this binarized index still demonstrated that the model correctly predicted 81% of 
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choices across all trials and 76% of choices on ‘difficult trials’ (defined as in Behrens et al.8 as those 

where the expected value of the two options differed by less than 5). Additional comparison of this 

model against alternatives (two simplified models using only information about outcome probability 

not magnitude, and vice versa, and one keeping β and γ fixed across blocks) are given in the table 

below. 

Model Number of 

parameters 

Negative 

Log 

Likelihood 

(lower is 

better) 

AIC (lower 

is better) 

Pseudo-R2 

(higher is 

better) 

Adjusted 

Pseudo-R2 

(higher is 

better) 

A 

(i) Full Model as used in main 

manuscript. (Uses prior 

outcomes and shock 

magnitude to guide choice) 

6                

(α,β,γ per 

block) 

2217.6 4795.3 

 

0.382 

 

0.332 

 

(ii) Prior outcome history 

model. (Uses only previous 

outcomes to guide choice) 

4                     

(α, β per 

block) 

2520.3 5280.7 0.300 0.267 

(iii) Outcome value model 

(Uses only shock magnitudes 

associated with the two 

shapes to guide choice) 

2 (β per block) 3516.8 7153.7 0.016 

 

-0.0007 

B      

Full Model with Single Risk 

Preference (γ) and Inverse 

Temperature (β) across both 

blocks 

4 (α per block, 

single β,γ 

across blocks)   

2305.9 4851.8 0.36 0.326 

Model fits to participants’ choice behavior. (A). The full behavioral model (i), as used for the 
analyses reported in the main manuscript and in prior published studies of reward-learning8, 
assumes that participants combine information about outcome probability and magnitude when 
making their choices. An alternate possibility is that subjects predominantly used only one of these 
two sources of information. Hence, we examined the fit to participants’ behavior of the full model (i) 
relative to two simplified version of this model: (ii) a model which ignores shock magnitude 
information and (iii) a model which uses shock magnitude information but does not adapt its 
expected outcome probability on the basis of previous outcomes. We report two measures of model 
fit (negative log likelihood and the Pseudo-R2 measure) as well as model fit statistics which penalize 
additional parameters (the Akaike Information Criteria, AIC, and the adjusted Pseudo-R2 measure). 
As can be seen, the full model outperforms both the more limited models on all measures. (B) The 
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same measures of model fit are given for a simplified version of the full model which uses 2 learning 
rate parameters (one for the stable task block and one for the volatile task block) but only one risk 
preference and one inverse temperature parameter across the whole task. This simpler model 
performs marginally less well than the full model reported in the main manuscript (even when 
penalizing the additional parameters in the full model) and also has the disadvantage that it assumes 
that all of the effect of block volatility loads onto the learning rate parameter (rather than the risk 
preference or inverse temperature parameters). The full model allows these parameters to vary 
between blocks and thus does not rely on this assumption, also allowing for empirical examination 
of the relationship between anxiety and each of these parameter estimates. Note. The Pseudo-R2 
and adjusted Pseudo-R2 measures were calculated as recommended by McFadden (McFadden, D., 
1974, “Conditional Logit Analysis of Qualitative Choice Behavior" in Frontiers in Econometrics, ed. 
Zarembka, P., 105–142, Academic Press). α= learning rate; γ = risk preference, β = inverse decision 
temperature. 
 
The Bayesian learner. 
 
The Bayesian Learner has previously been described in detail by Behrens and colleagues8. Briefly, the 

learner estimates the likelihood of shock delivery following a given choice on trial i+1 given the 

outcome of the choice made on the current trial (i) and the previously estimated probability of that 

outcome. It takes advantage of the Markovian assumption that the full history of estimated outcome 

probabilities does not need to be used, but that this can be approximated by using the estimate of 

outcome probability from trial i alone. Under this assumption, the probability that a given choice 

(and by subtraction from 1, the probability for the other choice) will result in shock delivery on the 

next trial, i.e ( +1), is represented using a beta distribution with mean  and a width parameter V. V 

is defined as exp( ), where   is the estimated volatility of the environment.  

 

In other words, the estimated volatility  is the log of the variance parameter (V) of this beta 

distribution. A second parameter used is , which reflects uncertainty in the current estimate of 

environmental volatility – this is high in environments that rapidly transit between stable and 

volatile periods. Formally, K = exp(k) and is the width parameter of a normal distribution, centered 

on , which represents the probability distribution of volatility on the following trial ( +1):  
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The joint probability of +1, +1 and  is estimated following the outcome ( ) of each trial as: 

 

Trialwise estimates of the individual parameters ( +1, +1, k) are obtained by marginalization of the 

joint probability function. In addition, trial-wise estimates of surprise are calculated by taking the 

negative logarithm of the conditional probability of the outcome on trial , given the expectation of 

the Bayesian learner22, i.e: 

 

The figure below illustrates the trialwise estimates of volatility obtained from the Bayesian Learner 

across the aversive learning task. 

 

 

Environmental volatility  as estimated by the Bayesian learner on a trial-wise basis across the 
stable and volatile task blocks. Panels (a) and (b) depict the estimates that correspond to 
presentation of the stable block prior to, or following, the volatile block, respectively. Estimated 
volatility (black lines, left hand axes), can be seen to change gradually across each block of 90 trials 
as the learner accrues information about the (in)stability of task contingencies. This gradual accrual 
of information means that the initial trials of each block provide least information about 
environmental volatility, and a large number of trials are needed to assess the extent to which 
participants can alter their learning rate in response to volatility. The underlying outcome 
probabilities of the task are included as blue lines (right hand axes).  
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Modelling alternative potential influences on learning rate 

As described above, participants’ learning was estimated within each task block using a Rescorla-

Wagner predictor10 coupled to a softmax based action selector. This enabled us to estimate changes 

in learning rate between the volatile and stable blocks of the task. There are, however, other 

potential influences on learning rate that are not captured by this model and which may conceivably 

be influenced by trait anxiety. In particular, learning rates often start high and decay exponentially 

during the course of learning (see, for example, Schiller, D. et al., 2008, “From fear to safety and 

back: reversal of fear in the human brain.” The Journal of neuroscience: 28, 11517-11525). We 

therefore tested whether, using a more complex learning model in which a variety of factors 

compete for influence over learning rate, trait anxiety would be specifically associated with volatility 

related effects on participants’ learning rate.  

 

The learning rate (α) on trial ( ) of the alternative model was calculated as: 

 

) 

 

Here  is the Bayesian volatility on trial ,  represents the expected (mean) value of volatility across 

the task,  is a decaying exponential function and  is the expected value of this function. The 

learning rate on a given trial is a weighted sum of three terms: the mean learning rate across trials 

( ), the trial-wise demeaned Bayesian volatility (subject specific weight = ) and the trial-

wise demeaned exponential decay function (subject specific weight = ). These parameters along 

with the slope of the exponential function( λ ) and the decision temperature and risk preference 

terms from the selector model were fitted to participant behavior across the entire task (parameter 

fits were calculated by the same Bayesian procedure as used in the main study analysis). The results 

of this analysis are presented in Figure S4. 
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